Riemannian foliations admitting transversal conformal fields
نویسندگان
چکیده
منابع مشابه
Conformal vector fields and conformal transformations on a Riemannian manifold
In this paper first it is proved that if ξ is a nontrivial closed conformal vector field on an n-dimensional compact Riemannian manifold (M, g) with constant scalar curvature S satisfying S ≤ λ1(n − 1), λ1 being first nonzero eigenvalue of the Laplacian operator ∆ on M and Ricci curvature in direction of a certain vector field is non-negative, then M is isometric to the n-sphere S(c), where S =...
متن کاملThe transversal wave equation and the noncommutative geodesic flow in Riemannian foliations
Let (M,F) be a compact Riemannian foliated manifold, equipped with a bundlelike metric gM . We will also use the following notation: N ∗F is the conormal bundle to F , G is the holonomy groupoid of F . In Introduction, we will formulate our main results for the geometric case of the transverse signature operator, referring the reader to the main body of the paper for the formulations in the cas...
متن کاملSpacetimes admitting quasi-conformal curvature tensor
The object of the present paper is to study spacetimes admitting quasi-conformal curvature tensor. At first we prove that a quasi-conformally flat spacetime is Einstein and hence it is of constant curvature and the energy momentum tensor of such a spacetime satisfying Einstein's field equation with cosmological constant is covariant constant. Next, we prove that if the perfect flui...
متن کاملClosed conformal vector fields on pseudo-Riemannian manifolds
∇XV = λX for every vector field X. (1.2) Here ∇ denotes the Levi-Civita connection of g. We call vector fields satisfying (1.2) closed conformal vector fields. They appear in the work of Fialkow [3] about conformal geodesics, in the works of Yano [7–11] about concircular geometry in Riemannian manifolds, and in the works of Tashiro [6], Kerbrat [4], Kühnel and Rademacher [5], and many other aut...
متن کاملComponentwise conformal vector fields on Riemannian almost product manifolds
On a Riemannian almost product manifold, the notion of a componentwise conformal vector field is introduced and several examples are exhibited. We show that this class of vector fields is a conformal invariant. For a compact manifold, a Bochner type integral formula for the Ricci tensor on such vector fields is obtained. Then, integral inequalities which link a curvature condition with the exis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometriae Dedicata
سال: 2008
ISSN: 0046-5755,1572-9168
DOI: 10.1007/s10711-008-9240-6